Vision Weekly News

40 ozkoreapost.com FRI. 3. JUNE. 975 가로열쇠 2.수익과배당이높은일류회사의주식 4.닥치는대로마구하는짓 5.돈을모아둠 7.지독한감기 8.말이나행동으로더럽혀욕되게함 10.강의를하지않고쉼 11.세차게타오르는불꽃 13.어떤세력의관할아래 15.이름을지정하여가리킴 16.군대의기강 18.천가지모습과만가지형상 20.전지를두번접어자른크기의종이 세로열쇠 1.집안살림에쓰는기구 2.쇠귀에경읽기 3.머뭇거리며망설임 4.네변의길이가같은사각형 6.비단에수를놓은것처럼아름다운산천 9.자기생각대로혼자서처리하는사람 12.아주환하게밝은세상 14.낮은사람이규율을무시하고윗사람을꺾고오름 17.말을탄무사 19.마음껏먹고마심 낱말퍼즐 *정답은아래에있습니다. 1 2 3 4 5 6 7 9 8 9 10 11 12 13 14 15 16 17 18 19 20 김선생 수학 이번호 정답 스도쿠 이번호 정답 낱말퀴즈 이번호 정답 *문제는40p에있습니다. Solve the followings (1-4) 1 − 2 − 3 − (5 − 3) = 3 + 8 ( 6 , 7 학년 ) 2 3 −2 + 4 − −2 + = 4 − 10 − 3 + 4 ( 7, 8 학년 ) 3 3 − 4 − 2 = 0 ( 8, 9 학년 ) 4 3 2 − 7 + 2 = 0 ( 9, 10 학년 ) Factorise the followings (5-8) 5 5 − 10 − 20 ( 6, 7 학년 ) 6 − + 6 − 3 + 2 ( 8 학년 ) 7 2 − 9 − 10 ( 9 학년 ) 8 4 2 − 12 + 9 − 25 + 40 − 16 2 ( 10 학년 ) (9) The area of a rectangle is 200 2 and its perimeter is 60 m. Find its dimensions of the rectangle. 김선생수학알제브라연습문제 (268) ( Exercise of Algebra ) ( Answer ) 1 − 2 − 3 − (5 − 3) = 3 + 8 − ( − 1) − 2 = 3 + 8 − 2 − 3 = 8 − 4 = 8 ∴ = − 2 2 3 − 2 + 4 − − 2 + = 4 − 10 − 3 + 4 3 2 − − = 4 − 40 − 3 + 4 6 + = − 36 6 + − = − 36 6 = − 36 ∴ = − 6 3 3 − 4 − 2 = 0 3 − = 0 4 − 2 = 0 = 3 2 = 4 ∴ = 2 , 3 4 3 2 − 7 + 2 = 0 − 2 3 − 1 = 0 − 2 = 0 3 − 1 = 0 = 2 3 = 1 ∴ = 2 , 1/3 5 5 − 10 − 20 = 5 × − 5 × 2 − 5 × 4 = 5 ( − 2 − 4 ) 6 − + 6 − 3 + 2 = − + 2 + 6 − 3 = − + 2 + 3 (2 − ) = 2 − + 3 (2 − ) = 2 − ( + 3 ) 7 2 − 9 − 10 = ( 2 − 9 − 10) = − 10 + 1 8 4 2 − 12 + 9 − 25 + 40 − 16 2 = (2 ) 2 − 2 2 3 + 3 2 − (25 − 40 + 16 2 ) = (2 − 3) 2 − 5 2 − 2 5 (4 ) + (4 ) 2 = (2 − 3) 2 − (5 − 4 ) 2 = (2 − 3) − 5 − 4 {(2 − 3) + 5 − 4 } = 2 − 3 − 5 + 4 (2 − 3 + 5 − 4 ) = 2 − 8 + 4 (2 + 2 − 4 ) = 2 + 2 − 4 × 2( − 2 + 1) = 4 + 2 − 4 ( − 2 + 1) (9) Let x = width of the rectangle y = length of the rectangle area of the rectangle = width × length 200 = xy xy = 200 ① Solve the followings (1-4) 1 − 2 − 3 − (5 − 3) = 3 + 8 ( 6 , 7 학년 ) 2 3 −2 + 4 − −2 + = 4 − 10 − 3 + 4 ( 7, 8 학년 ) 3 3 − 4 − 2 = 0 ( 8, 9 학년 ) 4 3 2 − 7 + 2 = 0 ( 9, 10 학년 ) Factorise the followings (5-8) 5 5 − 10 − 20 ( 6, 7 학년 ) 6 − + 6 − 3 + 2 ( 8 학년 ) 7 2 − 9 − 10 ( 9 학년 ) 8 4 2 − 12 + 9 − 25 + 40 − 16 2 ( 10 학년 ) (9) The area of a rectangle is 200 2 and its perimeter is 60 m. Find its dimensions of the rectangle. 김선생수학알제브라연습문제 (268) ( Exercise of Algebra ) ( Answer ) 1 − 2 − 3 − (5 − 3) = 3 + 8 − ( − 1) − 2 = 3 + 8 − 2 − 3 = 8 − 4 = 8 ∴ = − 2 2 3 − 2 + 4 − − 2 + = 4 − 10 − 3 + 4 3 2 − − = 4 − 40 − 3 + 4 6 + = − 36 6 + − = − 36 6 = − 36 ∴ = − 6 3 3 − 4 − 2 = 0 3 − = 0 4 − 2 = 0 = 3 2 = 4 ∴ = 2 , 3 4 3 2 − 7 + 2 = 0 − 2 3 − 1 = 0 − 2 = 0 3 − 1 = 0 = 2 3 = 1 ∴ = 2 , 1/3 5 5 − 10 − 20 = 5 × − 5 × 2 − 5 × 4 = 5 ( − 2 − 4 ) 6 − + 6 − 3 + 2 = − + 2 + 6 − 3 = − + 2 + 3 (2 − ) = 2 − + 3 (2 − ) = 2 − ( + 3 ) 7 2 − 9 − 10 = ( 2 − 9 − 10) = − 10 + 1 8 4 2 − 12 + 9 − 25 + 40 − 16 2 = (2 ) 2 − 2 2 3 + 3 2 − (25 − 40 + 16 2 ) = (2 − 3) 2 − 5 2 − 2 5 (4 ) + (4 ) 2 = (2 − 3) 2 − (5 − 4 ) 2 = (2 − 3) − 5 − 4 {(2 − 3) + 5 − 4 } = 2 − 3 − 5 + 4 (2 − 3 + 5 − 4 ) = 2 − 8 + 4 (2 + 2 − 4 ) = 2 + 2 − 4 × 2( − 2 + 1) = 4 + 2 − 4 ( − 2 + 1) (9) Let x = width of the rectangle y = length of the rectangle area of the rectangle = width × length 200 = xy  xy = 200 ① perimeter of the rectangle = 2 ( width + length ) 60 = 2 ( x + y )  x + y = 30 ② From ① xy = 200 = 1 × 200 = 2 × 100 = 4 × 50 = 8 × 25 = 10 × 20 If x = 10 and y = 20 , the equation of ② is satisfied. The dimensions of the rectangle is 10 × 20. ( width = 10 and length = 20 ) Solve the followings (1-4) 1 − 2 − 3 − (5 − 3) = 3 + 8 2 3 −2 + 4 − −2 + = 4 − 10 − 3 + 4 3 3 − 4 − 2 = 0 ( 8 4 3 2 − 7 + 2 = 0 ( 9, Factorise the followings (5-8) 5 5 − 10 − 20 ( 6 − + 6 − 3 + 2 7 2 − 9 − 10 ( 9 학 8 4 2 − 12 + 9 − 25 + 40 − 16 2 (9) The area of a rectangle is 200 2 and its perimet Find its dimensions of the rectangle. 김선생수학알제브라연습문제 (268) ( E ( Answer ) 1 − 2 − 3 − (5 − 3) = 3 + 8 − ( − 1) − 2 = 3 + 8 − 2 − 3 = 8 − 4 = 8 ∴ = − 2 2 3 − 2 + 4 − − 2 + = 4 − 10 − 3 + 3 2 − − = 4 − 40 − 3 + 4 6 + = − 36 6 + − = − 36 6 = − 36 ∴ = − 6 3 3 − 4 − 2 = 0 3 − = 0 4 − 2 = 0 = 3 2 = 4 ∴ = 2 , 3 4 3 2 − 7 + 2 = 0 − 2 3 − 1 = 0 − 2 = 0 3 − 1 = 0 = 2 3 = 1 ∴ = 2 , 1/3 5 5 − 10 − 20 = 5 × − 5 × 2 − 5 × 4 = 5 ( − 2 − 4 ) 6 − + 6 − 3 + 2 = − + 2 + 6 − 3 = − + 2 + 3 (2 − ) = 2 − + 3 (2 − ) = 2 − ( + 3 ) 7 2 − 9 − 10 = ( 2 − 9 − 10) = − 10 + 1 8 4 2 − 12 + 9 − 25 + 40 − 16 2 = (2 ) 2 − 2 2 3 + 3 2 − (25 − 40 + 16 2 ) = (2 − 3) 2 − 5 2 − 2 5 (4 ) + (4 ) 2 = (2 − 3) 2 − (5 − 4 ) 2 = (2 − 3) − 5 − 4 {(2 − 3) + 5 − 4 } = 2 − 3 − 5 + 4 (2 − 3 + 5 − 4 ) = 2 − 8 + 4 (2 + 2 − 4 ) = 2 + 2 − 4 × 2( − 2 + 1) = 4 + 2 − 4 ( − 2 + 1) (9) Let x = width of the rectangle y = length of the rectangle area of the rectangle = width × length 200 = xy  xy = 200 ① perimeter of the rectangle = 2 ( width + length ) 60 = 2 ( x + y )  x + y = 30 ② From ① xy = 200 = 1 × 200 = 2 × 100 = 4 × 50 = If x = 10 and y = 20 , the equation of ② is satisfi The dimensions of the rectangle is 10 × 20. ( width

RkJQdWJsaXNoZXIy NTUxNzI=